O.P.Code: 20CE0160

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Regular & Supplementary Examinations December-2023 FLUID MECHANICS & HYDRAULIC MACHINERY

	(Mechanical Engineering)	_		
Tiı		Max. N	Iarks	s: 60
(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I				
1	a Calculate the density, specific weight and weight of one litre of a petrol of specific gravity is 0.7.	CO1	L3	6M
	b Explain the phenomenon of capillarity. Obtain an expression for capillary fall of a liquid.	CO1	L2	6 M
OR				
2	Derive the expression for pressure difference in U-tube differential manometer and Inverted U-tube differential manometer with neat sketches.	CO1	L3	12M
3	Water flows through a pipe AB 1.2 m diameter at 3 m/s and then passes through a pipe BC 1.5 m diameter. At C, the pipe branches. Branch CD is 0.8 m in diameter and carries one third of the flow in AB. The flow velocity in branch CE is 2.5 m/s. Find the volume rate of flow in AB, the velocity in BC, the velocity in CD and the diameter of CE.	CO2	L3	12M
4	OR	CO2	т э	(M
4	a Derive equation for force exerted by the flowing fluid on a Pipe bend.b Obtain Euler's equation of motion.	CO2 CO2	L3 L3	6M 6M
5	Explain about Venturimeter with neat sketches. Derive expression for rate of flow through Venturimeter.	CO3	L2	12M
	OR			
6	List out minor losses in pipe flow and write the equations for all minor losses. UNIT-IV	CO3	L1	12M
7	Derive an expression for the hydraulic efficiency when a liquid jet strikes an	CO ₄	L3	12M
	unsymmetrical moving curved plate when jet strikes tangentially at one of the tip.			
	OR			
8	Explain the various elements of hydroelectric power station with a neat sketch. UNIT-V	CO4	L2	12M
9	A Pelton wheel is to be designed for the following specifications: Shaft power = 11,772 kW, head = 380 m, speed =750 r.p.m, overall efficiency = 86%. Jet diameter is not to exceed one-sixth of the wheel diameter. Determine: (i) The wheel diameter, (ii) The number of jets required and (iii) Diameter of jet. Take Kv1 = 0.985 and K u1 = 0.45.	CO5	L3	12M
10		CO5	L2	7M
	b Describe pumps in series and parallel. *** END ***	CO5	L2	5M

